Surface composition, bonding, and morphology in the nucleation and growth of ultra-thin, high quality nanocrystalline diamond films
نویسندگان
چکیده
The morphology, composition, and bonding character (carbon hybridization state) of continuous, ultra-thin (thickness ∼60 nm) nanocrystalline diamond (NCD) membranes are reported. NCD films were deposited on a silicon substrate that was pretreated using an optimized, two-step seeding process. The surface after each of the two steps, the as-grown NCD topside and the NCD underside (revealed by etching away the silicon substrate) is examined by X-ray PhotoElectron Emission spectroMicroscopy (X-PEEM) combined with X-ray absorption near edge structure (XANES) spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The first step in the seeding process, a short exposure to a hydrocarbon plasma, induces the formation of SiC at the diamond/Si interface along with a thin, uniform layer of hydrogenated, amorphous carbon on top. This amorphous carbon layer allows for a uniform, dense layer of nanodiamond seed particles to be spread over the substrate in the second step. This facilitates the growth of a homogeneous, continuous, smooth, and highly sp-bonded NCD film. We show for the first time that the underside of this film possesses atomic-scale smoothness (RMS roughness: 0.3 nm) and N98% diamond content, demonstrating the effectiveness of the two-step seeding method for diamond film nucleation. © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Laser Micro-Raman Spectroscopy of CVD Nanocrystalline Diamond Thin Film
Laser micro-Raman spectroscopy is an ideal tool for assessment and characterization of various types of carbon-based materials. Due to its special optical properties (CrN) coated stainless steel substrates. NCD films have been investigated by laser micro-Raman spectroscopy. The fingerprint of diamond based materials is in the spectral region of 1000-1600 cm-1 in the first order of Raman scatter...
متن کاملEffects of UV irradiation treated polycarbonate substrates on properties of nanocrystalline TiO2 sol-gel derived thin films
In this study, in order to achieve effective coating of the homogeneous titanium dioxide (TiO2) thin film, UV irradiation pre-treatment was carried out to activate PC surfaces before coating. Sol-gel-based nanocrystalline TiO2 thin films were prepared by employing tetrabutyl-titanate as a precursor. Nanocrystalline TiO2 thin films were deposited by sol-gel spin coating on the treated substrates...
متن کاملChemical Nucleation of Diamond Films.
With the large differences in surface energy between film and substrate in combination with the low sticking coefficient of hydrocarbon radicals, nanocrystalline diamond growth on foreign substrates typically results in poor nucleation densities. A seeding technique is therefore required to realize pinhole-free and thin coalesced films. In this work, a chemical nucleation method for growth of d...
متن کاملNano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy
ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...
متن کاملNano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy
ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...
متن کامل